Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 3024 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • Certo
    • Errado
  • 2
    • Certo
    • Errado
  • 3
    • Certo
    • Errado
  • 4
    • Certo
    • Errado
  • 5
    • Certo
    • Errado
  • 6
    • Certo
    • Errado
  • 7
    • Certo
    • Errado
  • 8
    • a
    • b
    • c
    • d
  • 9
    • Certo
    • Errado
  • 10
    • Certo
    • Errado
  • 11
    • Certo
    • Errado
  • 12
    • a
    • b
    • c
    • d
    • e
  • 13
    • a
    • b
    • c
    • d
    • e
  • 14
    • a
    • b
    • c
    • d
    • e
  • 15
    • a
    • b
    • c
    • d
    • e

Os tempos de duração de exames de cateterismo cardíaco ( Y, em minutos) efetuados por determinada equipe médica seguem uma distribuição normal com média µ e desvio padrão σ, ambos desconhecidos. Em uma amostra aleatória simples de 16 tempos de duração desse tipo de exame, observou-se tempo médio amostral igual a 58 minutos, e desvio padrão amostral igual a 4 minutos.

A partir da situação hipotética apresentada e considerando Φ(2) = 0,977, em que Φ(z) representa a função de distribuição acumulada de uma distribuição normal padrão e z é um desvio padronizado, julgue o item que se segue, com relação ao teste de hipóteses H0 = µ ≥ 60 minutos, contra HA = µ < 60 minutos, em que H0 e HA denotam, respectivamente, as hipóteses nula e alternativa.

Se o teste for efetuado com nível de significância igual a 1%, o poder do teste será igual a 99% para qualquer valor hipotético µ.

Considerando que X e Y sejam variáveis aleatórias mutuamente independentes que seguem distribuição normal padrão, julgue o próximo item.

A soma S = X + Y e a diferença seguem distribuições distintas.

Um paciente que compre, mensalmente, determinado medicamento pode optar pelos fornecedores A ou B. Suponha que, em cada mês t(t= 1, 2, 3, ...), essa opção seja feita de acordo com um processo de Markov de primeira ordem: denotada por {Z}, em que, no mês t, Zt = 1, se o paciente optar pelo fornecedor A, ou Zt = 0, se ele optar pelo fornecedor B.

Na matriz , cada entrada Pij, i, j = 0 ou 1 representa a probabilidade de transição do estado i no instante t 1 para o estado j no instante t.

Com base nessas informações, julgue o item a seguir.

No limite estacionário, a probabilidade de o paciente optar pelo fornecedor B (estado 0) é superior à probabilidade de ele optar pelo fornecedor A (estado 1).

O toal diário – X – de pessoas recebidas em uma unidade de pronto atendimento (UPA) para atendimento ambulatorial, e o total diário – Y – de pessoas recebidas nessa mesma UPA para atendimento de urgência seguem processos de Poisson homogêneos, com médias, respectivamente, iguais as 20 pacientes/dia e 10 pacientes/dia, e as variáveis aleatórias X e Y são independentes. Sabe-se que, em média, a necessidade de cuidados hospitalares atinge 10% dos pacientes do atendimento ambulatorial e 90% dos pacientes do atendimento de urgência.

A partir dessa situação hipotética, julgue o próximo item, considerando que o registro da necessidade de cuidados hospitalares seja feito no momento em que o paciente chegue à UPA e que H seja a quantidade diária registrada de pacientes com necessidades de cuidados hospitalares.

Considerando a equivalência 1 dia = 24 horas, então o tempo médio de chegada entre dois pacientes consecutivos para o atendimento de urgência nessa UPA é inferior a 3 horas.

Em determinado hospital, o tempo de espera por atendimento ambulatorial para cada paciente, em minutos, é uma variável aleatória X que segue distribuição normal com média μ e desvio padrão σ. Para o controle estatístico da qualidade de atendimento nesse hospital, registram-se os valores dos tempos X, e os tempos observados são tratados estatisticamente e organizados em forma de gráficos de controle de qualidade denominados "cartas de Shewhart". A tabela seguinte apresenta as médias e as amplitudes observadas em 4 amostras de tamanho n = 5.

A partir das informações e da tabela precedentes, julgue o item seguinte, considerando que a situação em tela se encontre sob controle e que Φ(3) = 0,9987, em que Φ(z) representa a função de distribuição acumulada da distribuição normal padrão

O desvio padrão amostral dos tempos de espera para atendimento ambulatorial é um estimador não tendencioso para o desvio padrão populacional σ.

Determinado estudo considerou um modelo de regressão linear simples na forma yi = β0 + β1xi + εi, em que yi representa o número de leitos por habitante existente no município i; xi representa um indicador de qualidade de vida referente a esse mesmo município i, para i = 1, ..., n. A componente εi representa um erro aleatório com média 0 e variância σ2. A tabela a seguir mostra a tabela ANOVA resultante do ajuste desse modelo pelo método dos mínimos quadrados ordinários.

A partir das informações e da tabela apresentadas, julgue o item subsequente.

A estimativa de σ2 foi igual a 10.

Um estudo de análise fatorial considerou um conjunto de dados constituído por cinco variáveis. Restringindo-se aos dois primeiros fatores, a tabela a seguir mostra as cargas fatoriais correspondentes a essas variáveis e as respectivas comunalidades.

Com referência a essas informações e à tabela precedente, julgue o item subsecutivo.

As comunalidades c1 e c2 são iguais.

O gráfico a seguir apresenta a quantidade de ativos (que fizeram pelo menos uma compra virtual) no primeiro semestre de cada ano, no período de 2013 a 2017.

De acordo com os dados, a média de consumidores ativos, no período considerado, é maior que

Se P (X = 0) representa a probabilidade de esse atendente não receber emails indesejados em determinado dia, estima-se que tal probabilidade seja nula.

Considere uma variável aleatória X, com distribuição normal, média igual a 3 e variância igual a 9, e uma variável aleatória Y, com distribuição exponencial e média igual a 3. Os quantis q(0,25) aproximados de X e Y são, respectivamente,

Considere X e Y variáveis aleatórias com a seguinte função de densidade conjunta:

f(x,y) = 15x2 y; para 0 < x < y <1, e 0 caso contrário.

As esperanças condicionais E(X|Y=0,5) e E(Y|X=0,2) são, respectivamente,

Em uma região, a incidência de determinada doença na população é de 5%. Um médico aplica um teste em 10 pacientes, com o intuito de detectar a enfermidade. A sensibilidade do teste (probabilidade do teste dar positivo em um paciente enfermo) é de 90%, e a respectiva especificidade (probabilidade do teste dar negativo em um paciente saudável) é de 85%. Com base no exposto, qual é a probabilidade de que 2 pessoas apresentem um resultado positivo?

Considere que foram gerados dois números aleatórios, u1 = 0,409 e u2 = 0,119, com distribuição uniforme em (0,1). Deseja-se, a partir deles, simular duas observações de uma variável aleatória, X, com distribuição exponencial com média igual a 0,5, e duas observações de uma variável aleatória, W, com distribuição normal com média igual 1 e desvio padrão igual a 3. Os valores simulados são, respectivamente,

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282