Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 3024 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • Certo
    • Errado
  • 2
    • Certo
    • Errado
  • 3
    • a
    • b
    • c
    • d
    • e
  • 4
    • a
    • b
    • c
    • d
    • e
  • 5
    • a
    • b
    • c
    • d
    • e
  • 6
    • a
    • b
    • c
    • d
    • e
  • 7
    • a
    • b
    • c
    • d
    • e
  • 8
    • a
    • b
    • c
    • d
    • e
  • 9
    • a
    • b
    • c
    • d
    • e
  • 10
    • a
    • b
    • c
    • d
    • e
  • 11
    • a
    • b
    • c
    • d
    • e
  • 12
    • a
    • b
    • c
    • d
    • e
  • 13
    • Certo
    • Errado
  • 14
    • Certo
    • Errado
  • 15
    • Certo
    • Errado

Em determinado município, o número diário X de registros de novos armamentos segue uma distribuição de Poisson, cuja função de probabilidade é expressa por em que k = 0, 1, 2, ... , e M é um parâmetro.

Considerando que a tabela precedente mostra as realizações da variável aleatória X em uma amostra aleatória simples constituída por cinco dias, julgue os itens que se seguem.


A estimativa de máxima verossimilhança do desvio padrão da distribuição da variável X é igual a 2 registros por dia.

De acordo com uma agência internacional de combate ao tráfico de drogas, o volume diário de cocaína líquida (X, em litros) apreendida por seus agentes segue uma distribuição normal com média igual a 50 L e desvio padrão igual a 10 L.

A partir dessas informações e considerando que Z representa uma distribuição normal padrão, em que P(Z ≤ -2) = 0,025, julgue o item subsecutivo.

P(X > 70 litros) = 0,05.

Uma urna I contém inicialmente 4 bolas azuis e 6 bolas vermelhas; nessa ocasião, a urna II contém 5 bolas azuis e 4 bolas vermelhas, e a urna III, 2 azuis e 7 vermelhas.

Uma bola é sorteada da urna I e colocada na urna II. Em seguida, uma bola é sorteada da urna II e colocada na urna III. Por fim, uma bola é sorteada da urna III.

A probabilidade de que a bola sorteada da urna III seja azul é igual a

A probabilidade condicional P[ Y = 0 | X = 0] é igual a

Se (Xn) é uma sequência de variáveis aleatórias com distribuição uniforme no intervalo (0, (n – 1)/ n), n > 1, então (Xn) converge para uma distribuição

Se X1, X2, ..., Xn é uma amostra aleatória simples de uma distribuição exponencial com parâmetro θ, ou seja,

f(x|θ) = θe-θx, θ > 0,

então, o estimador de θ pelo método dos momentos é

Uma amostra aleatória simples de tamanho 400 foi obtida de uma variável aleatória populacional, com média µ desconhecida e apresentou os seguintes resultados:

Média amostral: 125

Variância amostral: 100

Um intervalo aproximado com 95% de confiança para µ será dado por

Uma variável aleatória populacional tem média desconhecida e variância 25. O tamanho da amostra aleatória simples para que possamos garantir, com 95% de confiança, que o valor da média amostral não se afastará do da média populacional por mais de 0,2 unidade, deve ser maior ou igual a

Se = b0 + b1X é a reta ajustada pela regressão e se ei = Yi - é o resíduo da observação i, i – 1, ..., n, avalie as afirmativas a seguir.

Está correto o que se afirma em

Seja X a variável que representa o diâmetro de uma peça fabricada por uma metalúrgica. Sabe-se que X tem distribuição normal com média 10 cm e variância 4 cm2. Toda peça cujo diâmetro se distanciar da média por menos do que 1,68 cm é considerada boa. Três peças são selecionadas aleatoriamente e com reposição da distribuição de X. A probabilidade de exatamente uma ser boa é igual a

A tabela a seguir indica o valor y do salário, em número de salários mínimos (SM) e os respectivos tempos de serviço, em anos, x, de 5 funcionários de uma empresa:

Suponha que valha a relação: y j = α + βi;+ εi em que i representa a i-ésima observação, a e p são parâmetros desconhecidos e £j é o erro aleatório com as hipóteses para a regressão linear simples. Se as estimativas de a e p forem obtidas pelo método de mínimos quadrados por meio dessas 5 observações, a previsão de salário para um funcionário com 4 anos de serviço será, em SM, igual a

A tabela a seguir, referente a determinada microrregião hipotética do Brasil, mostra o número de nascidos vivos no ano de 2014, a população dessa microrregião em meados de 2014 e o total de óbitos registrados nesse mesmo ano e local.

Com base nas informações e na tabela apresentadas, julgue o item que se segue.

O crescimento vegetativo registrado nessa microrregião em 2014 foi de 5%.

Todo paciente que chega a determinado posto hospitalar é imediatamente avaliado no que se refere à prioridade de atendimento. Suponha que o paciente seja classificado como "emergente" (Y = 0) ou como "não emergente" (Y = 1), e que as quantidades X, diárias, de pacientes que chegam a esse posto sigam uma distribuição de Poisson com média igual a 20. Considerando que W represente o total diário de pacientes emergentes, de tal sorte que , em que 0 ≤ wx e x ≥ 0, julgue o item subsequente.

A variância do número diário de pacientes que chegam a esse posto hospitalar é igual a 20 pacientes2.

Em uma pequena clínica hospitalar, a receita diária R e a despesa diária D, ambas em R$ mil, são variáveis aleatórias contínuas, tais que:

Considerando que a covariância entre as variáveis R e D seja igual a 10, e que seja o saldo diário, julgue o item a seguir.

P(R ≤ 5) = P(D ≤ 4).

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282