Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 3024 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • Certo
    • Errado
  • 2
    • Certo
    • Errado
  • 3
    • Certo
    • Errado
  • 4
    • Certo
    • Errado
  • 5
    • Certo
    • Errado
  • 6
    • Certo
    • Errado
  • 7
    • Certo
    • Errado
  • 8
    • Certo
    • Errado
  • 9
    • Certo
    • Errado
  • 10
    • Certo
    • Errado
  • 11
    • Certo
    • Errado
  • 12
    • Certo
    • Errado
  • 13
    • Certo
    • Errado
  • 14
    • Certo
    • Errado
  • 15
    • Certo
    • Errado



Tendo em vista que, diariamente, a Polícia Federal apreende uma quantidade X, em kg, de drogas em determinado aeroporto do Brasil, e considerando os dados hipotéticos da tabela precedente, que apresenta os valores observados da variável X em uma amostra aleatória de 5 dias de apreensões no citado aeroporto, julgue o próximo item.

A tabela em questão descreve a distribuição de frequências da quantidade de drogas apreendidas nos cinco dias que constituem a amostra.

Um pesquisador estudou a relação entre a taxa de criminalidade (Y) e a taxa de desocupação da população economicamente ativa (X) em determinada região do país. Esse pesquisador aplicou um modelo de regressão linear simples na forma Y = bX + a + ε, em que b representa o coeficiente angular, a é o intercepto do modelo e ε denota o erro aleatório com média zero e variância σ2. A tabela a seguir representa a análise de variância (ANOVA) proporcionada por esse modelo.

A respeito dessa situação hipotética, julgue o próximo item, sabendo que b > 0 e que o desvio padrão amostral da variável X é igual a 2.

A estimativa da variância σ2 é superior a 0,5.

Uma pesquisa realizada com passageiros estrangeiros que se encontravam em determinado aeroporto durante um grande evento esportivo no país teve como finalidade investigar a sensação de segurança nos voos internacionais. Foram entrevistados 1.000 passageiros, alocando-se a amostra de acordo com o continente de origem de cada um — África, América do Norte (AN), América do Sul (AS), Ásia/Oceania (A/O) ou Europa. Na tabela seguinte, N é o tamanho populacional de passageiros em voos internacionais no período de interesse da pesquisa; n é o tamanho da amostra por origem; P é o percentual dos passageiros entrevistados que se manifestaram satisfeitos no que se refere à sensação de segurança.


Em cada grupo de origem, os passageiros entrevistados foram selecionados por amostragem aleatória simples. A última linha da tabela mostra o total populacional no período da pesquisa, o tamanho total da amostra e Ppop representa o percentual populacional de passageiros satisfeitos.

A partir dessas informações, julgue o próximo item.

A estimativa do percentual populacional de passageiros originários da África que se mostraram satisfeitos com a sensação de segurança nos voos internacionais foi igual a 80% e a estimativa do erro padrão associado a esse resultado foi inferior a 4%.

Um estudo mostrou que a quantidade mensal Y (em quilogramas) de drogas ilícitas apreendidas em certo local segue uma distribuição exponencial e que a média da variável aleatória Y é igual a 10 kg.

Considerando que F(y) = P(Y ≤ y) represente a função de distribuição de Y, em que y é uma possível quantidade de interesse (em kg), e que 0,37 seja valor aproximado de e-1, julgue os itens subsecutivos.

P(Y ≥ 10 kg) > P(Y ≤ 10 kg).

A respeito dessa situação hipotética, julgue o item a seguir.

A média amostral da variável resposta y foi superior a 30 horas.

A respeito dessa situação hipotética, julgue o item a seguir.

O erro padrão associado à estimação do coeficiente angular foi superior a 0,30.

A tabela a seguir, referente a determinada microrregião hipotética do Brasil, mostra o número de nascidos vivos no ano de 2014, a população dessa microrregião em meados de 2014 e o total de óbitos registrados nesse mesmo ano e local.

Com base nas informações e na tabela apresentadas, julgue o item que se segue.

Em 2014, nessa microrregião, a taxa bruta de natalidade, que representa a frequência com que ocorreram os nascimentos na população em questão, em permilagem, foi inferior a 6‰.

Todo paciente que chega a determinado posto hospitalar é imediatamente avaliado no que se refere à prioridade de atendimento. Suponha que o paciente seja classificado como "emergente" (Y = 0) ou como "não emergente" (Y = 1), e que as quantidades X, diárias, de pacientes que chegam a esse posto sigam uma distribuição de Poisson com média igual a 20. Considerando que W represente o total diário de pacientes emergentes, de tal sorte que , em que 0 ≤ wx e x ≥ 0, julgue o item subsequente.

O total diário W de pacientes emergentes segue uma distribuição de Poisson com média superior a 3.

Em uma pequena clínica hospitalar, a receita diária R e a despesa diária D, ambas em R$ mil, são variáveis aleatórias contínuas, tais que:

Considerando que a covariância entre as variáveis R e D seja igual a 10, e que seja o saldo diário, julgue o item a seguir.

Para r ≥ 0 e d ≥ 0, a função de distribuição acumulada conjunta referente ao vetor aleatório (R, D) é expressa por P(R ≤ r, D ≤ d) = 1 .

Os tempos de duração de exames de cateterismo cardíaco ( Y, em minutos) efetuados por determinada equipe médica seguem uma distribuição normal com média µ e desvio padrão σ, ambos desconhecidos. Em uma amostra aleatória simples de 16 tempos de duração desse tipo de exame, observou-se tempo médio amostral igual a 58 minutos, e desvio padrão amostral igual a 4 minutos.

A partir da situação hipotética apresentada e considerando Φ(2) = 0,977, em que Φ(z) representa a função de distribuição acumulada de uma distribuição normal padrão e z é um desvio padronizado, julgue o item que se segue, com relação ao teste de hipóteses H0 = µ ≥ 60 minutos, contra HA = µ < 60 minutos, em que H0 e HA denotam, respectivamente, as hipóteses nula e alternativa.

Ao se aplicar o teste t de Student com nível de significância igual a 2,3%, conclui-se haver evidências estatisticamente significativas contra a hipótese H0.

X1, X2, ..., X10 representa uma amostra aleatória simples retirada de uma distribuição normal com média µ e variância σ2, ambas desconhecidas. Considerando que e representam os respectivos estimadores de máxima verossimilhança desses parâmetros populacionais, julgue o item subsecutivo.

A razão segue uma distribuição normal padrão.

Uma amostra aleatória simples Y1, Y2, ..., Y25 foi retirada de uma distribuição normal com média nula e variância σ2, desconhecida. Considerando que , em que representa a distribuição qui-quadrado com 25 de liberdade, e que , julgue o item a seguir.

A razão segue uma distribuição t de Student com 24 graus de liberdade.

Um paciente que compre, mensalmente, determinado medicamento pode optar pelos fornecedores A ou B. Suponha que, em cada mês t(t= 1, 2, 3, ...), essa opção seja feita de acordo com um processo de Markov de primeira ordem: denotada por {Z}, em que, no mês t, Zt = 1, se o paciente optar pelo fornecedor A, ou Zt = 0, se ele optar pelo fornecedor B.

Na matriz , cada entrada Pij, i, j = 0 ou 1 representa a probabilidade de transição do estado i no instante t 1 para o estado j no instante t.

Com base nessas informações, julgue o item a seguir.

O referido processo de Markov é duplamente estocástico.

O toal diário – X – de pessoas recebidas em uma unidade de pronto atendimento (UPA) para atendimento ambulatorial, e o total diário – Y – de pessoas recebidas nessa mesma UPA para atendimento de urgência seguem processos de Poisson homogêneos, com médias, respectivamente, iguais as 20 pacientes/dia e 10 pacientes/dia, e as variáveis aleatórias X e Y são independentes. Sabe-se que, em média, a necessidade de cuidados hospitalares atinge 10% dos pacientes do atendimento ambulatorial e 90% dos pacientes do atendimento de urgência.

A partir dessa situação hipotética, julgue o próximo item, considerando que o registro da necessidade de cuidados hospitalares seja feito no momento em que o paciente chegue à UPA e que H seja a quantidade diária registrada de pacientes com necessidades de cuidados hospitalares.

A soma X + Y segue uma distribuição de Poisson com média e variância respectivamente iguais a 30 e 900.

Em determinado hospital, o tempo de espera por atendimento ambulatorial para cada paciente, em minutos, é uma variável aleatória X que segue distribuição normal com média μ e desvio padrão σ. Para o controle estatístico da qualidade de atendimento nesse hospital, registram-se os valores dos tempos X, e os tempos observados são tratados estatisticamente e organizados em forma de gráficos de controle de qualidade denominados "cartas de Shewhart". A tabela seguinte apresenta as médias e as amplitudes observadas em 4 amostras de tamanho n = 5.

A partir das informações e da tabela precedentes, julgue o item seguinte, considerando que a situação em tela se encontre sob controle e que Φ(3) = 0,9987, em que Φ(z) representa a função de distribuição acumulada da distribuição normal padrão

Se os limites de controle para a carta forem estabelecidos de modo que a probabilidade de um ponto cair acidentalmente além desse limites seja igual a 0,002, então, nesse caso, o valor do average run length de um processo sob controle (ARL0) será superior a 400.

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282