Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 3024 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • a
    • b
    • c
    • d
    • e
  • 2
    • a
    • b
    • c
    • d
    • e
  • 3
    • a
    • b
    • c
    • d
    • e
  • 4
    • Certo
    • Errado
  • 5
    • Certo
    • Errado
  • 6
    • Certo
    • Errado
  • 7
    • Certo
    • Errado
  • 8
    • Certo
    • Errado
  • 9
    • Certo
    • Errado
  • 10
    • Certo
    • Errado
  • 11
    • Certo
    • Errado
  • 12
    • Certo
    • Errado
  • 13
    • Certo
    • Errado
  • 14
    • Certo
    • Errado
  • 15
    • Certo
    • Errado

Seja X uma variável aleatória discreta cuja função distribuição de probabilidade acumulada é dada por:

Como consequência, é correto afirmar que:

De um lote de 12 processos, três serão sorteados para fins de avaliação por parte do Conselho Nacional de Justiça (CNJ). Em cinco dos processos originais houve condenação do réu, e nos demais, absolvição.

Assim, a probabilidade de que a maior parte dos processos a serem sorteados seja de absolvições é igual a:

Suponha que uma amostra de tamanho n = 6 será extraída de uma população de 20 indivíduos, sendo a idade a variável de interesse. A população é mostrada na íntegra a seguir.

A extração seguirá a técnica de amostragem sistemática, iniciando pelo indivíduo de ordem 4, acima grifado.

Se o intervalo de seleção é igual a três, a estimativa não tendenciosa da média populacional será igual a:

A tabela a seguir, referente a determinada microrregião hipotética do Brasil, mostra o número de nascidos vivos no ano de 2014, a população dessa microrregião em meados de 2014 e o total de óbitos registrados nesse mesmo ano e local.

Com base nas informações e na tabela apresentadas, julgue o item que se segue.

Na microrregião em questão, a taxa bruta de mortalidade em 2014, que denota a razão entre o total de óbitos e o de nascidos vivos nessa população, foi igual a 0,4.

Todo paciente que chega a determinado posto hospitalar é imediatamente avaliado no que se refere à prioridade de atendimento. Suponha que o paciente seja classificado como "emergente" (Y = 0) ou como "não emergente" (Y = 1), e que as quantidades X, diárias, de pacientes que chegam a esse posto sigam uma distribuição de Poisson com média igual a 20. Considerando que W represente o total diário de pacientes emergentes, de tal sorte que , em que 0 ≤ wx e x ≥ 0, julgue o item subsequente.

Se, em determinado dia, 10 pacientes forem atendidos nesse posto hospitalar, então a probabilidade de se registrar, entre esses pacientes, exatamente um paciente emergente será igual a 0,1.

Em uma pequena clínica hospitalar, a receita diária R e a despesa diária D, ambas em R$ mil, são variáveis aleatórias contínuas, tais que:

Considerando que a covariância entre as variáveis R e D seja igual a 10, e que seja o saldo diário, julgue o item a seguir.

A probabilidade de o saldo S ser nulo é igual a 0.

Os tempos de duração de exames de cateterismo cardíaco ( Y, em minutos) efetuados por determinada equipe médica seguem uma distribuição normal com média µ e desvio padrão σ, ambos desconhecidos. Em uma amostra aleatória simples de 16 tempos de duração desse tipo de exame, observou-se tempo médio amostral igual a 58 minutos, e desvio padrão amostral igual a 4 minutos.

A partir da situação hipotética apresentada e considerando Φ(2) = 0,977, em que Φ(z) representa a função de distribuição acumulada de uma distribuição normal padrão e z é um desvio padronizado, julgue o item que se segue, com relação ao teste de hipóteses H0 = µ ≥ 60 minutos, contra HA = µ < 60 minutos, em que H0 e HA denotam, respectivamente, as hipóteses nula e alternativa.

Nesse teste de hipóteses, comete-se o erro do tipo II caso a hipótese H0 seja rejeitada, quando, na verdade, H0 não deveria ser rejeitada.

X1, X2, ..., X10 representa uma amostra aleatória simples retirada de uma distribuição normal com média µ e variância σ2, ambas desconhecidas. Considerando que e representam os respectivos estimadores de máxima verossimilhança desses parâmetros populacionais, julgue o item subsecutivo.

A soma X1 + X2 + ... + X10 é uma estatística suficiente para a estimação do parâmetro μ.

Uma amostra aleatória simples Y1, Y2, ..., Y25 foi retirada de uma distribuição normal com média nula e variância σ2, desconhecida. Considerando que , em que representa a distribuição qui-quadrado com 25 de liberdade, e que , julgue o item a seguir.

A variância da distribuição , com 25 graus de liberdade é superior a 40.

Um paciente que compre, mensalmente, determinado medicamento pode optar pelos fornecedores A ou B. Suponha que, em cada mês t(t= 1, 2, 3, ...), essa opção seja feita de acordo com um processo de Markov de primeira ordem: denotada por {Z}, em que, no mês t, Zt = 1, se o paciente optar pelo fornecedor A, ou Zt = 0, se ele optar pelo fornecedor B.

Na matriz , cada entrada Pij, i, j = 0 ou 1 representa a probabilidade de transição do estado i no instante t 1 para o estado j no instante t.

Com base nessas informações, julgue o item a seguir.

A probabilidade de transição do estado 0 do mês 10 para o estado 1 no mês 12 é inferior a 0,50.

O toal diário – X – de pessoas recebidas em uma unidade de pronto atendimento (UPA) para atendimento ambulatorial, e o total diário – Y – de pessoas recebidas nessa mesma UPA para atendimento de urgência seguem processos de Poisson homogêneos, com médias, respectivamente, iguais as 20 pacientes/dia e 10 pacientes/dia, e as variáveis aleatórias X e Y são independentes. Sabe-se que, em média, a necessidade de cuidados hospitalares atinge 10% dos pacientes do atendimento ambulatorial e 90% dos pacientes do atendimento de urgência.

A partir dessa situação hipotética, julgue o próximo item, considerando que o registro da necessidade de cuidados hospitalares seja feito no momento em que o paciente chegue à UPA e que H seja a quantidade diária registrada de pacientes com necessidades de cuidados hospitalares.

A média da variável aleatória H é igual a 11 pacientes/dia.

Em determinado hospital, o tempo de espera por atendimento ambulatorial para cada paciente, em minutos, é uma variável aleatória X que segue distribuição normal com média μ e desvio padrão σ. Para o controle estatístico da qualidade de atendimento nesse hospital, registram-se os valores dos tempos X, e os tempos observados são tratados estatisticamente e organizados em forma de gráficos de controle de qualidade denominados "cartas de Shewhart". A tabela seguinte apresenta as médias e as amplitudes observadas em 4 amostras de tamanho n = 5.

A partir das informações e da tabela precedentes, julgue o item seguinte, considerando que a situação em tela se encontre sob controle e que Φ(3) = 0,9987, em que Φ(z) representa a função de distribuição acumulada da distribuição normal padrão

Em uma carta de controle para a carta , Os limites “6 sigma" correspondem aos limites de um intervalo de 95% de confiança para a média μ, sob a hipótese de que o processo esteja sob controle.

Determinado estudo considerou um modelo de regressão linear simples na forma yi = β0 + β1xi + εi, em que yi representa o número de leitos por habitante existente no município i; xi representa um indicador de qualidade de vida referente a esse mesmo município i, para i = 1, ..., n. A componente εi representa um erro aleatório com média 0 e variância σ2. A tabela a seguir mostra a tabela ANOVA resultante do ajuste desse modelo pelo método dos mínimos quadrados ordinários.

A partir das informações e da tabela apresentadas, julgue o item subsequente.

O desvio padrão amostral do número de leitos por habitante foi superior a 10 leitos por habitante.

A série temporal da quantidade mensal de pacientes submetidos a determinado procedimento cirúrgico segue um processo na forma Xt = 100 + 0,5Xt 1 + αt 0,5αt 1, em que {αt} representa uma série temporal de ruídos aleatórios com média nula e variância 9.

A respeito desse processo, julgue o item que se segue.

A autocorrelação entre Xt e Xt 1 é igual a 0.

A série temporal da quantidade mensal de pacientes submetidos a determinado procedimento cirúrgico segue um processo na forma Xt = 100 + 0,5Xt 1 + αt 0,5αt 1, em que {αt} representa uma série temporal de ruídos aleatórios com média nula e variância 9.

A respeito desse processo, julgue o item que se segue.

A variância do processo {Xt} é igual a 9.

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282