Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 3024 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • Certo
    • Errado
  • 2
    • Certo
    • Errado
  • 3
    • Certo
    • Errado
  • 4
    • Certo
    • Errado
  • 5
    • a
    • b
    • c
    • d
    • e
  • 6
    • a
    • b
    • c
    • d
    • e
  • 7
    • a
    • b
    • c
    • d
    • e
  • 8
    • a
    • b
    • c
    • d
    • e
  • 9
    • a
    • b
    • c
    • d
    • e
  • 10
    • a
    • b
    • c
    • d
    • e
  • 11
    • a
    • b
    • c
    • d
    • e
  • 12
    • a
    • b
    • c
    • d
    • e
  • 13
    • a
    • b
    • c
    • d
    • e
  • 14
    • a
    • b
    • c
    • d
    • e
  • 15
    • a
    • b
    • c
    • d
    • e

Determinado estudo considerou um modelo de regressão linear simples na forma yi = β0 + β1xi + εi, em que yi representa o número de leitos por habitante existente no município i; xi representa um indicador de qualidade de vida referente a esse mesmo município i, para i = 1, ..., n. A componente εi representa um erro aleatório com média 0 e variância σ2. A tabela a seguir mostra a tabela ANOVA resultante do ajuste desse modelo pelo método dos mínimos quadrados ordinários.

A partir das informações e da tabela apresentadas, julgue o item subsequente.

A razão F da tabela ANOVA refere-se ao teste de significância estatística do intercepto β 0, em que se testa a hipótese nula H0 : β0 = 0 contra a hipótese alternativa HA : β0 ≠ 0.

A série temporal da quantidade mensal de pacientes submetidos a determinado procedimento cirúrgico segue um processo na forma Xt = 100 + 0,5Xt 1 + αt 0,5αt 1, em que {αt} representa uma série temporal de ruídos aleatórios com média nula e variância 9.

A respeito desse processo, julgue o item que se segue.

A média do processo {Xt} é igual a 100.

A série temporal da quantidade mensal de pacientes submetidos a determinado procedimento cirúrgico segue um processo na forma Xt = 100 + 0,5Xt 1 + αt 0,5αt 1, em que {αt} representa uma série temporal de ruídos aleatórios com média nula e variância 9.

A respeito desse processo, julgue o item que se segue.

A autocorrelação parcial entre Xt e Xt + 10 é igual a 0,5.

Deseja-se estimar o total de carboidratos existentes em um lote de 500.000 g de macarrão integral. Para esse fim, foi retirada uma amostra aleatória simples constituída por 5 pequenas porções desse lote, conforme a tabela seguinte, que mostra a quantidade x amostrada, em gramas, e a quantidade de carboidratos encontrada, y, em gramas.

Com base nas informações e na tabela apresentadas, julgue o item a seguir.

Considerando-se o modelo de regressão linear na forma y = αx + ε, em que ε denota o erro aleatório com média nula e variância V, e α representa o coeficiente angular, a estimativa de mínimos quadrados ordinários do coeficiente α é igual ou superior a 0,5.

A tabela a seguir indica o valor y do salário, em número de salários mínimos (SM) e os respectivos tempos de serviço, em anos, x, de 5 funcionários de uma empresa:


Suponha que valha a relação: y j = α + βxi + £h em que i representa a i-ésima observação, a e p são parâmetros desconhecidos e £j é o erro aleatório com as hipóteses para a regressão linear simples. Se as estimativas de a e p forem obtidas pelo método de mínimos quadrados por meio dessas 5 observações, a previsão de salário para um funcionário com 4 anos de serviço será, em SM, igual a

Sabe-se que, em determinada cidade, o desvio padrão da altura de crianças da primeira série do ensino fundamental é 4 cm. Uma amostra aleatória de tamanho maior do que 30, com reposição, de n crianças, foi colhida do conjunto de todas essas crianças e obteve-se um intervalo de confiança para a média desse conjunto dado por (129,02 cm; 130,98 cm) com coeficiente de confiança de 95%. Uma nova amostra de tamanho m será colhida e deseja-se que a amplitude do novo intervalo seja a metade daquela obtida com a amostra de tamanho n, com a mesma confiança. Nessas condições, o valor de m deverá ser igual a

A e B são dois eventos tais que P[A] = 0,4 e P[B] = 0,8.

Os valores mínimo e máximo da probabilidade condicional P[A|B] são, respectivamente,

Acerca da soma de variáveis aleatórias, avalie se as afirmativas a seguir, estão corretas.

I. A soma de n variáveis aleatórias independentes e identicamente distribuídas Bernoulli com parâmetro p, tem distribuição binomial com parâmetros n e p.

II. A soma de n variáveis aleatórias independentes e identicamente distribuídas Poisson com parâmetro λ tem distribuição Poisson com parâmetro nλ.

III. A soma de n variáveis aleatórias independentes e identicamente distribuídas exponencial com parâmetro λ tem distribuição gama com parâmetros n e λ.

Está correto o que se afirma em

Estima-se que 10% da população economicamente ativa, de certo Estado, estejam desempregados. Usando essa estimativa, se uma amostra aleatória simples de 400 pessoas dessa população economicamente ativa for observada, a probabilidade de que menos de 6% ou mais de 14% estejam desempregados é, aproximadamente, igual a

Uma loja recebe em média 100 clientes por dia com um desvio padrão de 10 clientes. A probabilidade de que, em um período de 100 dias, essa loja receba menos de 9.800 clientes é, aproximadamente, igual a

Avalie se as seguintes famílias de distribuições são uma família exponencial:

I. A família de distribuições Poisson com média desconhecida.

II. A família de distribuições normais com média conhecida e variância desconhecida.

III. A família de distribuições Beta com parâmetro α conhecido e parâmetro β desconhecido.

IV. A família de distribuições Uniforme no intervalo (0, θ), θ parâmetro desconhecido.

São de fato famílias exponenciais

Para testar H0: µ ≤ 20 contra H1: µ > 20, em que µ é a média de uma distribuição normal com variância desconhecida, uma amostra aleatória de tamanho 16 foi observada e exibiu as estatísticas a seguir.

Com base nesses dados, o valor da estatística de teste t-Student usual, a regra de decisão a ela associada ao nível de significância de 5% e a decisão são, respectivamente,

A média de uma variável aleatória X, cuja distribuição é desconhecida, é igual a m, com m > 0. Pelo Teorema de Tchebichev, a probabilidade de X não pertencer ao intervalo (m − θ, m + θ), com m > θ, é no máximo igual a 16%. O desvio padrão de X é então igual a θ multiplicado por

Uma variável aleatória X tem distribuição normal, variância desconhecida e com uma população de tamanho infinito. Deseja-se construir um intervalo de confiança de 95% para a média μ da população com base em uma amostra aleatória de tamanho 9 extraída dessa população e considerando a distribuição t de Student. Nessa amostra, observou-se que a média apresentou um valor igual a 5 e a soma dos quadrados dos 9 elementos da amostra foi igual a 243.

O intervalo de confiança encontrado foi igual a

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282