Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 4368 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • a
    • b
    • c
    • d
  • 2
    • a
    • b
    • c
    • d
  • 3
    • a
    • b
    • c
    • d
  • 4
    • a
    • b
    • c
    • d
  • 5
    • a
    • b
    • c
    • d
    • e
  • 6
    • a
    • b
    • c
    • d
    • e
  • 7
    • a
    • b
    • c
    • d
    • e
  • 8
    • Certo
    • Errado
  • 9
    • Certo
    • Errado
  • 10
    • Certo
    • Errado
  • 11
    • Certo
    • Errado
  • 12
    • Certo
    • Errado
  • 13
    • Certo
    • Errado
  • 14
    • Certo
    • Errado
  • 15
    • Certo
    • Errado

Priscila, que sempre foi uma menina muito curiosa, decidiu, durante uma festa de família, perguntar a idade de todos à sua volta. Seu Primo Lucas tem 8 anos, sua tia Ana tem 27, o tio Bento tem 33 anos, seu outro tio David tem 45 anos e sua irmã Beatriz tem 12 anos. Qual o Média das idades da família de Priscila?

Utilizando a Teorema de Tales, encontre os valores de x, sabendo que as retas a, b e c são paralelas.

Nas compras acima de R$ 100,00, o cliente ganha um cupom, para o sorteio de uma TV. O sorteio será aberto ao público, com bolinhas numeradas de 0 a 9. Quantas são as possibilidades de sorteio visto que o número da sorte é uma sequência de quatro números?

Sobre os triângulos. Marque a opção incorreta.

Um pintor costuma dissolver cada 2 latas de tinta concentrada em 3 latas de água. Para que a tinta tenha a mesma concentração, esse pintor precisará misturar 12 latas de água com quantas latas de tinta?

Em uma empresa com 120 funcionários, 42 recebem vale-transporte e 95 recebem vale-refeição. Sabendo que todos os funcionários da empresa recebem ao menos um desses dois benefícios, o total de funcionários que recebem ambos os benefícios é igual a

O número de Euler, nome dado em homenagem ao matemático suíço Leonhard Euler, é um número irracional denotado por e, cuja representação decimal tem seus 4 primeiros algarismos dados por 2,718. Esse número é a base dos logaritmos naturais, cuja função f(x) = lnx = logex tem inúmeras aplicações científicas.

A respeito desse assunto, julgue o item a seguir.

Se é a função módulo, então o domínio da função composta é o conjunto dos números reais.

Cada j = 0, 1, …, 11 representa um mês do ano de 2017, isto é, j = 0 = janeiro, j = 1 = fevereiro, e assim sucessivamente. Se o mês j tem d dias, então j + 1/d representa o dia 1.º do mês j; j + 2/d representa o dia 2 do mês j, e assim sucessivamente, j + d/d = j + 1 representa o dia d do mês j. Dessa forma, cada dia do ano de 2017 pode ser representado por um número x do intervalo [0, 12]. Considere que, nessa representação, em cada dia x do ano de 2017, a porcentagem de água acumulada em relação à capacidade máxima do reservatório de determinada represa seja expressa pelo valor da função f(x) = x2 - 10x + 60.

A partir dessas informações, julgue o item que se segue.

A diferença entre os percentuais de água contida na represa em 31/12/2017 e 1.º/1/2017 é superior a 20%.

Cada j = 0, 1, …, 11 representa um mês do ano de 2017, isto é, j = 0 = janeiro, j = 1 = fevereiro, e assim sucessivamente. Se o mês j tem d dias, então j + 1/d representa o dia 1.º do mês j; j + 2/d representa o dia 2 do mês j, e assim sucessivamente, j + d/d = j + 1 representa o dia d do mês j. Dessa forma, cada dia do ano de 2017 pode ser representado por um número x do intervalo [0, 12]. Considere que, nessa representação, em cada dia x do ano de 2017, a porcentagem de água acumulada em relação à capacidade máxima do reservatório de determinada represa seja expressa pelo valor da função f(x) = x2 - 10x + 60.

A partir dessas informações, julgue o item que se segue.

Em 2017, a quantidade de água acumulada no reservatório ficou acima de 51% de sua capacidade máxima em dias de exatamente 4 meses.

A figura seguinte mostra, em um sistema de coordenadas cartesianas ortogonais xOy, em que a unidade de medida é o metro, uma região retangular OABC. O lado OA mede 600 m e o lado OC mede 800 m.

A figura mostra também os pontos F = ponto médio de OA, H = ponto médio de CB, G = centro do retângulo OABC, D = ponto médio de FG, e E = ponto médio de GH. Nos pontos O, A, B, C, D e E foram instalados pontos de acesso à Internet — wi-fi. Nessa configuração, o usuário consegue se conectar à Internet desde que o seu smartphone esteja a 200 m ou menos de qualquer desses pontos de acesso.

Com base nessas informações e na figura apresentada, julgue o próximo item.

A reta que contém os pontos B e E intercepta o eixo Ox no ponto de abscissa x = 300.

A figura seguinte mostra, em um sistema de coordenadas cartesianas ortogonais xOy, em que a unidade de medida é o metro, uma região retangular OABC. O lado OA mede 600 m e o lado OC mede 800 m.

A figura mostra também os pontos F = ponto médio de OA, H = ponto médio de CB, G = centro do retângulo OABC, D = ponto médio de FG, e E = ponto médio de GH. Nos pontos O, A, B, C, D e E foram instalados pontos de acesso à Internet — wi-fi. Nessa configuração, o usuário consegue se conectar à Internet desde que o seu smartphone esteja a 200 m ou menos de qualquer desses pontos de acesso.

Com base nessas informações e na figura apresentada, julgue o próximo item.

Considere que uma pessoa esteja em ponto P da região retangular de modo que o ângulo OPA seja igual a 90°. Nesse caso, se o cosseno do ângulo AOP for igual a 0,3, essa pessoa estará a mais de 200 m da origem O.

A respeito dos números complexos, julgue o item a seguir.

Se n for um número par e se p for um número real diferente de zero, então o polinômio zn + p = 0 tem, necessariamente, duas raízes reais distintas.

A respeito dos números complexos, julgue o item a seguir.

Se n > 1 for um número inteiro e se ω ≠ 1 for uma raiz n-ésima da unidade (isto é, ωn = 1), então 1 + ω +...+ ωn-1 = 0.

Julgue o item que se segue, relativo a matrizes e sistemas lineares.

Se 0 é a matriz nula n × n, se I é a matriz identidade n × n, e se P é uma matriz n × n tal que P2 + 2P + I = 0, então P é inversível.

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282