Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 70 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • Certo
    • Errado
  • 2
    • Certo
    • Errado
  • 3
    • Certo
    • Errado
  • 4
    • Certo
    • Errado
  • 5
    • Certo
    • Errado
  • 6
    • Certo
    • Errado
  • 7
    • Certo
    • Errado
  • 8
    • Certo
    • Errado
  • 9
    • Certo
    • Errado
  • 10
    • Certo
    • Errado
  • 11
    • Certo
    • Errado
  • 12
    • Certo
    • Errado
  • 13
    • Certo
    • Errado
  • 14
    • Certo
    • Errado
  • 15
    • Certo
    • Errado

Cada j = 0, 1, …, 11 representa um mês do ano de 2017, isto é, j = 0 = janeiro, j = 1 = fevereiro, e assim sucessivamente. Se o mês j tem d dias, então j + 1/d representa o dia 1.º do mês j; j + 2/d representa o dia 2 do mês j, e assim sucessivamente, j + d/d = j + 1 representa o dia d do mês j. Dessa forma, cada dia do ano de 2017 pode ser representado por um número x do intervalo [0, 12]. Considere que, nessa representação, em cada dia x do ano de 2017, a porcentagem de água acumulada em relação à capacidade máxima do reservatório de determinada represa seja expressa pelo valor da função f(x) = x2 - 10x + 60.

A partir dessas informações, julgue o item que se segue.

Sabendo-se que fevereiro de 2017 teve 28 dias, então f(1,25) é a porcentagem de água acumulada no reservatório da represa no dia 25/2/2017.

Cada j = 0, 1, …, 11 representa um mês do ano de 2017, isto é, j = 0 = janeiro, j = 1 = fevereiro, e assim sucessivamente. Se o mês j tem d dias, então j + 1/d representa o dia 1.º do mês j; j + 2/d representa o dia 2 do mês j, e assim sucessivamente, j + d/d = j + 1 representa o dia d do mês j. Dessa forma, cada dia do ano de 2017 pode ser representado por um número x do intervalo [0, 12]. Considere que, nessa representação, em cada dia x do ano de 2017, a porcentagem de água acumulada em relação à capacidade máxima do reservatório de determinada represa seja expressa pelo valor da função f(x) = x² - 10x + 60.

A partir dessas informações, julgue o item que se segue.

Se, para 2018, a previsão para a porcentagem de água no reservatório for dada pela composição , em que , então

A figura seguinte mostra, em um sistema de coordenadas cartesianas ortogonais xOy, em que a unidade de medida é o metro, uma região retangular OABC. O lado OA mede 600 m e o lado OC mede 800 m.

A figura mostra também os pontos F = ponto médio de OA, H = ponto médio de CB, G = centro do retângulo OABC, D = ponto médio de FG, e E = ponto médio de GH. Nos pontos O, A, B, C, D e E foram instalados pontos de acesso à Internet — wi-fi. Nessa configuração, o usuário consegue se conectar à Internet desde que o seu smartphone esteja a 200 m ou menos de qualquer desses pontos de acesso.

Com base nessas informações e na figura apresentada, julgue o próximo item.

Se um smartphone está em um drone, a 50 m de altura sobre o ponto P = (100, 100), então, nesse caso, é possível conectá-lo à Internet a partir do ponto de acesso localizado na origem O.

Com relação a uma sequência numérica a 1, a2, …, an, julgue o item subsequente.

Se a sequência estiver em progressão aritmética com razão igual a 10 e a 1 = 5, então a10 > 100.

A respeito dos números complexos, julgue o item a seguir.

Se q é um número real diferente de zero e se ω é uma das raízes da equação zn = q, então as raízes dessa equação são: q1/n; ω; ω2; …; ωn-1.

Julgue o item que se segue, relativo a matrizes e sistemas lineares.

Um sistema linear escrito na forma matricial PX = -X, em que P é uma matriz n × n de coeficientes constantes e X é a matriz das incógnitas, n × 1, tem solução única se, e somente se, a matriz P + I for inversível (I é a matriz identidade n × n).

A respeito de história da matemática, julgue o item subsequente.

Em virtude de necessidades contábeis da época, os egípcios tinham a preferência pela utilização das frações unitárias, isto é, aquelas em que o número 1 é o numerador. Parte do Papiro de Rhind, um importante registro matemático dos egípcios, trata da decomposição de frações a partir de frações unitárias. As frações unitárias na forma 1/n sempre podem ser decompostas em exatamente duas frações unitárias, por exemplo, Nesse contexto, é correto afirmar que as únicas decomposições da fração unitária são

Tendo como referência inicial as informações apresentadas no texto precedente, é correto afirmar que a avaliação formativa

tende a funcionar melhor quando o professor evita práticas de classificação bem como comentários que comparem o desempenho dos alunos.

Tendo como referência inicial as informações apresentadas no texto precedente, é correto afirmar que a avaliação formativa

deve ser desenvolvida em contexto e integrada aos processos de ensino, com a participação ativa dos alunos.

Considerando o texto apresentado e os múltiplos aspectos a ele relacionados, julgue o próximo item, com relação ao uso da resolução de problemas nas atividades avaliativas.

A resolução de problemas possibilita a avaliação de aspectos originais e criativos do pensamento dos alunos.

Ainda a respeito das competências e habilidades propostas pelos Parâmetros Curriculares Nacionais do Ensino Médio para a disciplina de matemática, julgue o próximo item.

Nos parâmetros curriculares nacionais do ensino médio, os temas que serão estudados e possibilitarão o desenvolvimento das competências e habilidades almejadas são divididos em apenas dois grandes eixos: álgebra e geometria.

O número de Euler, nome dado em homenagem ao matemático suíço Leonhard Euler, é um número irracional denotado por e, cuja representação decimal tem seus 4 primeiros algarismos dados por 2,718. Esse número é a base dos logaritmos naturais, cuja função f(x) = lnx = logex tem inúmeras aplicações científicas.

A respeito desse assunto, julgue o item a seguir.

Se é a função módulo, então o domínio da função composta é o conjunto dos números reais.

Cada j = 0, 1, …, 11 representa um mês do ano de 2017, isto é, j = 0 = janeiro, j = 1 = fevereiro, e assim sucessivamente. Se o mês j tem d dias, então j + 1/d representa o dia 1.º do mês j; j + 2/d representa o dia 2 do mês j, e assim sucessivamente, j + d/d = j + 1 representa o dia d do mês j. Dessa forma, cada dia do ano de 2017 pode ser representado por um número x do intervalo [0, 12]. Considere que, nessa representação, em cada dia x do ano de 2017, a porcentagem de água acumulada em relação à capacidade máxima do reservatório de determinada represa seja expressa pelo valor da função f(x) = x2 - 10x + 60.

A partir dessas informações, julgue o item que se segue.

A diferença entre os percentuais de água contida na represa em 31/12/2017 e 1.º/1/2017 é superior a 20%.

Cada j = 0, 1, …, 11 representa um mês do ano de 2017, isto é, j = 0 = janeiro, j = 1 = fevereiro, e assim sucessivamente. Se o mês j tem d dias, então j + 1/d representa o dia 1.º do mês j; j + 2/d representa o dia 2 do mês j, e assim sucessivamente, j + d/d = j + 1 representa o dia d do mês j. Dessa forma, cada dia do ano de 2017 pode ser representado por um número x do intervalo [0, 12]. Considere que, nessa representação, em cada dia x do ano de 2017, a porcentagem de água acumulada em relação à capacidade máxima do reservatório de determinada represa seja expressa pelo valor da função f(x) = x2 - 10x + 60.

A partir dessas informações, julgue o item que se segue.

Em 2017, a quantidade de água acumulada no reservatório ficou acima de 51% de sua capacidade máxima em dias de exatamente 4 meses.

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282