Ir para o conteúdo principal

Questões de Concurso – Aprova Concursos

Milhares de questões com o conteúdo atualizado para você praticar e chegar ao dia da prova preparado!


Exibir questões com:
Não exibir questões:
Minhas questões:
Filtros aplicados:

Dica: Caso encontre poucas questões de uma prova específica, filtre pela banca organizadora do concurso que você deseja prestar.

Exibindo questões de 4368 encontradas. Imprimir página Salvar em Meus Filtros
Folha de respostas:

  • 1
    • a
    • b
    • c
    • d
  • 2
    • a
    • b
    • c
    • d
  • 3
    • a
    • b
    • c
    • d
  • 4
    • a
    • b
    • c
    • d
  • 5
    • a
    • b
    • c
    • d
  • 6
    • a
    • b
    • c
    • d
    • e
  • 7
    • a
    • b
    • c
    • d
    • e
  • 8
    • a
    • b
    • c
    • d
    • e
  • 9
    • a
    • b
    • c
    • d
  • 10
    • a
    • b
    • c
    • d
  • 11
    • a
    • b
    • c
    • d
  • 12
    • a
    • b
    • c
    • d
    • e
  • 13
    • a
    • b
    • c
    • d
    • e
  • 14
    • Certo
    • Errado
  • 15
    • Certo
    • Errado

Observe a figura e responda:

Cada uma dessas partes representa que fração retângulo?

Um carpinteiro guarda, em quatro caixas opacas (não transparentes), dois tipos de parafusos que se diferenciam apenas por suas tonalidades (claros e escuros). Ele sabe exatamente quantos parafusos de cada tipo há em cada caixa. As quantidades estão apresentadas a seguir.

Considere que esse carpinteiro queira retirar, sem olhar, um parafuso de uma de suas caixas, esperando ter a maior probabilidade de obter um de cor clara.

A retirada deve ser feita da caixa

A obesidade é um dos maiores fatores de risco para doenças e, para evitá-la, é importante conhecer as categorias de peso, que podem ser identificadas através do Índice de Massa Corpórea (IMC). O IMC é a razão entre a massa de uma pessoa (em quilograma) e o quadrado de sua altura (em metro), ou seja, . As categorias para os resultados do IMC são mostradas na tabela.

Considere uma pessoa com obesidade mórbida, com I MC igual a 42 e altura 1 ,50 m. Para evitar problemas de saúde, seu médico lhe recomendou que emagrecesse o suficiente para chegar na categoria de sobrepeso.

A quantidade mínima de massa, em quilograma, que essa pessoa deve perder para alcançar a meta proposta pelo médico é

Com a finalidade de motivar seus funcionários, uma empresa premia o funcionário do mês organizando um sorteio de brindes. O sorteio é feito colocando-se em um globo não transparente: 3 bolas vermelhas, 5 bolas azuis, 8 bolas amarelas e 4 bolas brancas. O funcionário do mês deve retirar uma bola ao acaso e seu prêmio será determinado de acordo com a cor da bola: a bola vermelha corresponde a um televisor; a bola azul, a uma bicicleta; a bola amarela, a um ventilador; e a bola branca, a um micro-ondas.

Qual é a probabilidade de o funcionário do mês ganhar um televisor?

O gerente de uma concessionária, com a finalidade de mostrar o bom desempenho de sua equipe, traçou um plano de ação para seus vendedores baseado no número de vendas de veículos do ano anterior. Ele apresentou a quantidade de veículos vendidos , distribuída mensalmente, conforme o gráfico.

Seu plano para o próximo ano é estabelecer, como meta de vendas mensais, a média aritmética dos seis meses com maiores quantidades de veículos vendidos apresentados no gráfico.

Qual é o número mínimo de veículos que deverão ser vendidos para se cumprir a meta projetada pelo gerente?

O grupo para análise de inquéritos administrativos de uma corporação é formado por 3 tenentes e 5 sargentos. Quantas comissões de inquérito, constituídas por 5 pessoas, podem ser formadas, contendo, no mínimo, 1 tenente?

Seis livros diferentes estão distribuídos em uma estante de vidro, conforme a figura abaixo:


Considerando-se essa mesma forma de distribuição, de quantas maneiras distintas esses livros podem ser organizados na estante?

Sejam M = e N = , matrizes quadradas de ordem 3, e x ∈ R.

Se det (M) > det (N), então é correto afirmar que

Seja a equação geral da reta ax + by + c = 0. Quando a = 0, b ≠ 0 e c ≠ 0, a reta 

A superfície lateral de um cone, ao ser planificada, gera um setor circular cujo raio mede 10 cm e cujo comprimento do arco mede 10π cm. O raio da base do cone, em cm, mede

A área de um triângulo retângulo cuja hipotenusa mede 2 raiz quadrada de 5 cm e um dos catetos mede 4 cm é igual a:

Uma enquete demonstrou que 17% das empresas devem algum tipo de imposto do ano anterior, e, desse grupo, são 13% que devem algum tipo de imposto dos últimos
dois anos. Em relação ao total de empresas da enquete, a porcentagem das empresas que devem apenas os impostos do ano anterior é de, aproximadamente,

Em determinado concurso público para o cargo de professor,

1.200 candidatos inscreveram-se para as áreas de física,

matemática e química. Sabe-se que, dos inscritos, 230 podem

lecionar matemática e física; 380 podem lecionar física e

química; 220 podem lecionar matemática e química; 560

podem lecionar matemática; e 120 podem lecionar as três

disciplinas. A partir dessas informações, é possível construir o

denominado diagrama de Euler-Venn, como mostra a figura

a seguir.


O diagrama mostra subconjuntos disjuntos e cada uma das

letras de a a g indica a quantidade de elementos do

respectivo subconjunto. Por exemplo, g é a quantidade de

inscritos que só lecionam matemática. Com base nessas

informações e no diagrama, julgue os itens seguintes.

Há mais inscritos que podem lecionar somente matemática e física que inscritos que podem lecionar as três disciplinas.

Na figura a seguir, as retas r1, r2, r3, r4 e r5 são paralelas; as

retas s1 e s2 são transversais; X, Y e Z e os números ao lado

dos segmentos das retas transversais indicam seus

respectivos comprimentos.


Com relação à figura, julgue os itens seguintes.

Y + Z = 24.

© Aprova Concursos - Al. Dr. Carlos de Carvalho, 1482 - Curitiba, PR - 0800 727 6282