Com relação a matemática financeira, o item a seguir apresenta uma situação hipotética seguida de uma assertiva a ser julgada.
Para liquidar o estoque de determinado produto, o lojista ofereceu um desconto de 10% no preço de venda. Passados alguns dias, para o estoque remanescente, o lojista concedeu novo desconto, agora de 20% sobre o preço já com primeiro desconto. Nessa situação, o valor do desconto que é equivalente a um único desconto aplicado sobre o preço do produto é igual a 28%.
Em determinada loja, uma bicicleta é vendida por R$ 1.720 a vista ou em duas vezes, com uma entrada de R$ 920 euma parcela de R$ 920 com vencimento para o mês seguinte. Casoqueira antecipar o crédito correspondente ao valor da parcela, olojista paga para a financeira uma taxa de antecipação correspondente a 5% do valor da parcela.
Com base nessas informações, julgue o item a seguir.
Na compra a prazo, o custo efetivo da operação de financiamento pago pelo cliente será inferior a 14% ao mês.
Em um almoxarifado há, em estoque, 100 caixas na forma de paralelepípedos retângulos. Na tabela a seguir são mostrados alguns valores da frequência absoluta, da frequência relativa e da porcentagem da variável volume interno da caixa, em litros (L)
Considerando essas informações, julgue os seguintes itens.
A média aritmética dos volumes dessas caixas é igual a 40 L.
Em cada item a seguir é apresentada uma situação hipotética, seguida de uma assertiva a ser julgada, a respeito de proporcionalidade, divisão proporcional, média e porcentagem.
Em uma faculdade, para avaliar o aprendizado dos alunos em determinada disciplina, o professor aplica as provas A, B e C e a nota final do aluno é a média ponderada das notas obtidas em cada prova. Na prova A, o peso é 1; na prova B, o peso é 10% maior que o peso na prova A; na prova C, o peso é 20% maior que o peso na prova B. Nesse caso, se PA, PB e PC forem as notas obtidas por um aluno nas provas A, B e C, respectivamente, então a nota final desse aluno é expressa por
Com relação a uma sequência numérica α1, α2, …, αn, julgue o item subsequente.
Considere que a sequência seja formada pelos seguintes termos, nessa ordem: 10, 12, 15, 19, 24, 30, 37. Nesse caso, a sequência numérica bj = αj + 1 - αj, em que j = 1, 2, …, 6 forma uma progressão aritmética.
Julgue o item a seguir, relacionados a álgebra e aritmética.
Se a soma dos seis primeiros termos de uma progressão aritmética de razão 2 é 48, então o 5.º termo dessa progressão é 13.
Em uma operação da PRF, foram fiscalizados: 20 veículos automotores até o fim da primeira hora; 60 veículos automotores até o fim da segunda hora; 120 veículos automotores até o fim da terceira hora; 200 veículos automotores até o fim da quarta hora; e 300 veículos automotores até o fim da quinta hora. O padrão numérico observado manteve-se até o fim da décima hora, quando, então, foi finalizada a operação.
Considerando essa situação hipotética, julgue o item a seguir.
Considere que {qn}, para n variando de 1 a 10, seja a sequência numérica formada pelas quantidades de veículos fiscalizados apenas no decorrer da n-ésima hora de realização da operação, ou seja, q1 é a quantidade de veículos fiscalizados apenas no decorrer da primeira hora de realização da operação; q2 é a quantidade de veículos fiscalizados apenas no decorrer da segunda hora de realização da operação; e assim por diante. Nessa situação, a sequência {qn}, para n variando de 1 a 10, é uma progressão aritmética
A respeito de história da matemática, julgue o item subsequente.
Em um dos paradoxos do filósofo Zenão é contada a história do herói Aquiles, que disputa uma corrida com uma tartaruga. Nessa corrida ambos desenvolvem velocidades constantes, mas a razão entre a velocidade da tartaruga e a de Aquiles é da forma 1/m, em que m > 1. Aquiles, por ser mais rápido, permite que a tartaruga largue na sua frente e, depois de ela ter percorrido d1 metros, ele inicia a sua corrida. Depois de certo tempo, o herói percorreu essa distância de d1 metros; a tartaruga havia percorrido mais d2 metros. Na etapa seguinte, repete-se o processo e Aquiles percorre essa distância de d2 metros, enquanto a tartaruga percorre mais d3 metros. Considerando que esse processo continue, Aquiles será capaz de ultrapassar a tartaruga depois de percorrer uma distância igual a d1 × m/[m - 1].
Com relação a uma sequência numérica a 1, a2, …, an, julgue o item subsequente.
Se a sequência for uma progressão geométrica (PG), em que a1 = 5 e a4 = 135, então a razão dessa PG será maior que 4.
Um avião e um caminhão de bombeiros possuem reservatórios de água com capacidades de 12 mil e 8 mil litros de água, respectivamente. O caminhão possui uma bomba de 2,5 GPM, ou seja, é capaz de bombear 2,5 galões por minuto.
A partir dessa situação hipotética, julgue o seguinte item, considerando que 1 galão seja igual a 3,8 litros de água.